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Abstract 

We formulate lattice fermions in a way that encompasses Wilson fermions 

as well as the static and non-relativistic approximations. In particular, we treat 

mpa systematically (m, is the fermion mass) showing how to understand the 

Wilson action as an effective action for systems with p < mp. The results 

show how to extract matrix elements and the spectrum from simulations with 

m,a 7~ 1, which is relevant for the charm quark. 
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We formulate lattice fermions in a way that encompawzs Wilson fermions as weII as the static and non- 
relativistic approximations. In particular, we treat n+a systematically ( m, is the fermion mbss) showing how to 
understand the Wilson action as an effective action for systems with p < m,. The results show how to extract 
matrix elements and the spectrum from simulations with m,o *I* 1, which is relevant for the charm quark. 

1. INTRODUCTION scribes heavy quarkonia with the same validity as 

Current numerical calculations of lattice QCD 
have lattice spacings such that m+x & 1 for 
charm and bottom quarks. To extract meaning- 
ful results one must understand how to formu- 
late fermions under these circumstances. One 

the non-relativistic effective theory and describes 
heavy-light systems with the same validity as the 
non-relativistic and static effective theories. 

2. THE NEW ACTION 

approach is to formulate this problem starting 
from the large mass limit. Our approach is to de- 
duce an action that contains the Wilson [l], static 
[2], and non-relativistic [3] formulations aa special 
cases. An important question is how much of the 
flexibility of our formulation should be exploited 
to study, for example, quarkonia and heavy-light 
systems. A related and practical issue is how one 

The familiar heavy-quark effective theories 
treat time and space asymmetrically. Therefore, 
it should not be too surprising that our result [4] 
boils down to introducing a second hopping pa- 
ram&r to the familiar Wilson action. 

s = C4”dJ” - QC [!L(l - ro)u”,o$,+i, 
z 

can interpret numerical results obtained with the 
Wilson action when mqa x I. This paper offers 
a brief discussion of these issues. 

The key idea is that one should analyze every 
- KSC [4”(1 - -ri)Un.i$n+i (I) 

heavy-quark theory, including the Wilson theory, 
as an effective (cutoff) theory. After all, every 

“; &+i(I + 7i)li:,&] 

numerical simulation has a # 0. In other words, This action describes massless quarks when ~0 = 
one should avoid being constrained by an implicit ks -+ l/8. It also describes static quarks when 
desire to take the continuum limit by brute force. ~.. for.Ks = 0. Intuitively, there ought to be a trajec- 
Naturally, the goal remains the same, to extract tory in the ~0-6~ plane that describes somewhat 
universal (i.e. cutoff-free) information, but one massive quarks. 
would like to do so as efficiently as possible. Eq. (I) actually describes the simplest in a 

With any effective theory, one must understand class of actions, in which lattice artifacts are COT- 
its limitations. It is worth recalling that the rected by the Symanzik improvement program. 
characteristic momenta of the systems that we 
would like to study are much smaller than m,,. 

Further details appear elsewhere [4], but setting 
no = ns = n, the most important term is the 

In quarkonia the typical momentum scales are 
as(mq)mq and as(mg)2mq, so pa & I for a wide 

“clover” term [5] 

range of mqo. In heavy-light systems the typi- 
cal momentum is roughly &co, independent of 

AS = $ c Ijln~~u&v&, (2) 
“.P,” 

m,. Below we argue that the Wilson action de- 

*mt given at Lollice ‘92. *materdam, Sept. 15-19, ,992. 
where C,,, is a lattice approximant to F,,“. This is 
the form usually used in numerical work, but for 
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perturbative calculations and contact with con- 
tinuum thwries it is convenient to write n = x/n, 
(2~)-’ = 4 + ama, and (2~)‘&~ = 2/*11(m). 

3. THE CONTINUUM 

This section is in Minkowski space; everything 
else is in Euclidean space. The continuum ac- 
tion is S = s d*x &(i$J + m)$. Choose the gauge 
A0 = 0, split the fermion into twcxomponent 
fields, and redefine the fields 4 c) eimot4 and 
x I+ e-‘mot~. Then, using the appendix, 

S = J d’z (Q&4 + x+(i& + 2m)x 
(3) 

+$+D.ox+ - xD.mj) 

Because x appears quadratically in the functional 
integral, it can be integrated out, leaving an ef- 
fective theory for 4 with action 

S= d%++ i&,-D,a J ( 2m :iaa”.c 
> 

4 (4) 

For systems for which i&,D.ud << mD.04 the 
non-local expression can be expanded 

1 1 iao (iad 
2m + ia, e ?;;; - (zm)2 - (2m)3 - (5) 

Higher time derivatives can be eliminated using 
the equations of motion (e.g. [a,,, D] = E) [6], 
(D.a)’ = 0’ + ia.B, etc. 

Usually only the D2/(2m) and the u.B/(2m) 
terms are treated explicitly, with short-distance 
effects of the higher terms compensated by ad- 
justing the couplings of these two terms. Overall, 
this type of analysis is very successful, for exam- 
ple, motivating static potential models and devel- 
oping of heavy-quark symmetry. One limitation 
is obvious: the field 4 now creates states with 
energy-momentum relation E = p2/(2m) instead 
of E = m + p*/(Zm). Hence the splitting be- 
tween sectors with a different number of quarks 
does not come out right. Usually they can be 
corrected by hand, but one should keep an open 
mind to more subtle dynamical effects that might 
alter, say, mixing between heavy-quark mesons 
and glueballs. 

4. THE LATTICE 

Suppose that a lattice theory has the following 
l/M expansion for the Hamiltonian: 

fi=at Ml---- 

[ 

D2 ia.B 
2Mz 2M3 

AEY-.., (j 1 (6) 
4M,3 

+ anti-quark terms, 

but the M’s are not all the same. (Naturally, in a 
lattice theory the Hamiltonian is defined through 
the transfer matrix formalism.) They play the 
following roles: 

. MI counts quarks and anti-quarks * 

l Mz fixes spin-averaged splittings ***** 

. MS fixes hyperfine structure *** 

l MG fixes fine structure ** 

Of these “masses” Mz is the most important 
physically. As in sect. 3 (where MI = 0 and 
Mz = m) the fact that M1 # Mz can be cor- 
rected by hand. If that strategy is impractical or 
distasteful, one simply switches back to eq. (1); 
sect. 7 shows how the K’S can be tuned so that 
bf, = Mz. Similarly, the other masses multiply 
operators that are easy to interpret physically, so 
their deviations could be taken into account as 
perturbations. Alternatively, they can be car- 
rected as part of the Symanzik improvement of 
-I. (1). 

Ait aztiom~+rrt&xlassexemplif?ed by eq. (I) 
take the form of eq. (6), in the limit Ipl < Mz. 
pa < 1, even without.r&triction on a&’ [4]. Fii 
example, at tree level the Wilson action has 

bf, =n-’ log(1 + m,,a), (7) 

(2Mz)-’ = 
2 + 4maa + m$z2 

2mo(l+ moa)(2 + mea) (8) 
ii (2m$‘, 

and 

(2M3)-1 = WW1 - 2mo(:+cmou)~ (9) 
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These expressions are corrected at O(gi). The 
first two are easily extracted from the (free) 
energy-momentum relation 

Thus (&In) = (ql?lq) = 1 + m, and in the neu- 
tral sector 

cosh(Ea) = 1+ A ( 
2 

(ilflj) = (I+ my ip(l+ m) 
-ip(l + m) 1+pz > 

(15) 

and all other elements are zero. This model can 
be solved exactly, by diagonalizing (ilplj). Upon 
reconstructing the operator form and expanding 
in p, one obtains the analog of eq. (6). 

Note that (2Mz)-’ = dE/dpz arises from p* and 
the Wilson term, whereas the chromomagnetic 
term arises only from @. This leads to a mis- 
match with (2&)-l, which is removed by the 
clover term [5]. 

5. A TOY MODEL 

To derive eq. (6) one must set up the transfer 
matrix formalism. First one separates the four- 
component fields into twecomponent fields, using 
the appendix. The manipulations become quite 
cumbersome [7], so consider instead a toy model 
with the most important properties: 

s = -Jg(& + m)tJt + xr(ao + m)xr 
t 

+ipdxf - ipxdt. 
(11) 

Then Vt,KD$ = fl, d~~d&d~~d~y, and 

e-s = Fe- 
(I+m)(O:h+r:m) x 
p41+1~x!+*;ot.xtl. (12) 

where 

T(d’,X’.4 x) = e > > -iPQ’X’,Q’++X’X,W 
(13) 

- _ -~ 
The rules of Grassman integration imply 

{FL, 6’) = 1 = {s, 6+}, where 

are operators in Hilbert space [7]. The Fock vat- 
uum satisfies 610) = 610) = 0. The other states 
are lq) = ii+lO), 1s) = b+[O), and Iqf) = ii’i’lo). 
Up to Jacobian factors, the matrix elements of 
the transfer matrix are the coefficients of mono- 
mials in (Grassman numbers) a, a+, 6, and b+, 
when T(4+, X+; 4, x) is expressed as a polynomial. 
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6. THE NORMALIZATION 

iit and i+ create normalized states, 4’ and i+ 
do not. Applying eq. (14) to Wilson fermions, 
with m --) am0 - $‘A@), one sees that 

a(2) = (1+ amo - jazA(3))1’2 g(z) (16) 

is canonically normalized; in momentum space, 

a(p) = (1+ am0 + ‘a”p”) I’2 1 *(P). 

At p = 0 this factor is e“‘,lz, 

(17) 

This fact has been noticed in several phe- 
nomenological analyses [8, 91, which suggested 
using e”/‘O(z)yrq(z) and similar bilinears to 
determine heavy-light decay constants, using 
Andtze such as eM = 1+1/(2~)-1/(2n,). Com- 
bining the transfer-matrix analysis with mean 
field theory suggests a different Ansatz. Including 
gauge fields and using the notation of eq. (2) 

0” = (1 - !#C!,arl”, (18) 

-has unit mmnalization 17],-.where B,,T,!Q,, = 
xi Lin,i+n+i + (i/-i &n-i, In mean-field theory 
one replaces the dy&unical V’s by their average. 
Hence (1 - 6Z)‘&, where 2 = K(U) = n/8n, 
[lo], is expected to be correctly normalized to 
high accuracy. As shown in fig. 1 the mean-field 
Ansatz agrees perfectly with numerical data for 
the local current. 

7. MORE ON THE NEW ACTION 

This section concludes with two short com- 
ments on eq. (1). It is convenient to define 
am,, = (1 - 2~0 - 6rrS)/(2~,,) and C = IE~/K~. 



Then eq. (7) and the denominator of eq. (8) are 
the same, but the numerator of eq. (8) becomes 

C(2C + 2moa(l+ C) + m$12). (19) 

An appropriate choice of C imposes M1 = Mz, 
The asymmetric action is also natural from the 

point of view of renormalization. Imagine start- 
ing with the Wilson action on a fine lattice, and 
imagine performing a “block spin” to a coarse lat- 
tice. In perturbation theory this entails calculae 
ing the self-energy C(p). For a massive quark, 
the most natural subtraction point is on shell, 
e.g. E = Ml, p = 0. On the lattice, however, 

ac 

Ti on shell + 3” she,, 
w 

In the hopping-parameter notation this difference 
implies no # KS for the effective action on the 
coarse lattice. 

*II< I *III I III< 
0.10 0.12 0.14 0.1% 

KC- 

Figure 1. (J/$lV,lJ/$), where V, = &,$ is the 
(unnormalized) local charge. The lower line is the 
mean-field Ansatz &/(l-6;) and the upper line 
is Z~/(2rc). (The latter form is the one suggested 
by the massless limit.) To get the charge (should 
be 1) divide the data by the curve. 

A. FOUR TO TWO COMPONENTS 

The Direr: matrices are taken to be 

m=(; Tl), Yi=q( ii ;). (21) 

In Minkowski space q = -i; in Euclidean space 
q = 1. Fermion fields are decomposed into twe 
component form as follows: 

+= 
( > $ ’ &=(4’ -x). (2‘4 
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